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ABSTRACT
Let p > 1 be prime, and let Y C X = (Z/]JZ)Z2 be an infinite, closed,
shift-invariant subgroup with the following properties: the restriction to
Y of the shift-action o of Z? on X is mixing with respect to the Haar
measure Ay of Y, and every closed, shift-invariant subgroup Z C Y is
finite. We prove that every sufficiently mixing, non-atomic, shift-invariant

probability measure i on Y is equal to Ay.

Let G # {0} be a finite, abelian group, and let ¢ be the shift-action (om(Z))n =
Tmin Of Z2 on X = GZ’. Then there exist uncountably many distinct, o-
invariant probability measures on X which are Bernoulli—and hence mixing of
every order—under o: indeed, let v be a probability measure on G, put g = 1/22,
and note that different measures v, v’ lead to inequivalent Bernoulli measures
v%* and v/ 22. However, if Y C X is a closed, shift-invariant subgroup such that
the restriction ¢¥ of ¢ to Y is mixing (with respect to the normalized Haar
measure Ay of V), then Ay may be the only non-atomic, ¥ -invariant, mixing
probability measure, although there always exist many different invariant, non-
atomic, ergodic, non-mixing probability measures on Y. In order to study this
phenomenon we assume that G = Z/pZ is a cyclic group of prime order p, and

consider subgroups Y ¢ X®) = (z/ pZ)Zz with the following properties.

{(a) Y is infinite, closed, and shift-invariant;
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(b) Every closed, shift-invariant subgroup Z ¢ Y is finite;
(c) oY is mixing with respect to Ay.

1. Definition: Let Y ¢ XP) = (Z/;DZ)Zz be a subgroup satisfying (a)-(c), and
let © be a shift-invariant probability measure on Y. A finite, non-empty set
E C Z? is p-mixing if

Jim. p ( N Uf;m(B(n))) = [[ u(Bn))

nekE nekly

for every map n — B(n) from E into the o-algebra By of Borel subsets of V',
and p-non-mixing otherwise. A p-non-mixing set E C Z? is minimal y-non-
mixing if every set F' with @ # E' C E is p-mixing.

Every Ay-non-mixing set is also py-non-mixing (cf. Lemma 4). If the converse
is true, then the following theorem shows that p has to be equal to Ay; in other

words, Ay is the unique ‘most mixing’ measure for o¥.

2. THEOREM: Let p > 1 be a rational prime, Y C X®) a subgroup satisfying
(a)—(c), and let p be a non-atomic, shift-invariant probability measure on Y. If
there exists a minimal Ay -non-mixing set E C Z? which is also minimal u-non-
mixing, then p = Ay.

For the proof of Theorem 2 we need an explicit description of the subgroups
Y c X® satisfying (a)-(c). Let 9'{(2”) = F, [uf’, u$"'] be the ring of Laurent poly-
nomials in the variables u;, up with coefficients in the prime field F, = Z/pZ, and
write a typical element f € %ép) as f = ) neze ¢f(n)u”, where cf(n) € F, and
u® = uPtul? for every n = (ny,n2) € Z* An element f € mgp) is a generalized
polynomial in a single variable if its support S(f) = {n € Z? c¢s(n) # 0} is
contained in the line {k + ml: m € Z} for some k,1 € Z?2,1+# 0. The dual group
X® of X® can be identified with ER;”) by setting (f,z) = 5" Lneze s ()7
for every f € R and 2 = (2a) = (Ta,n € Z2) € X?), where the element
Y nez2 ¢f(n)zn € Fy is identified with the corresponding integer in {0,...,p—1}.
If Y ¢ X® is a closed, shift-invariant subgroup, then a = Y+ C iR(f ) = )?(;) is

an ideal; conversely, if a C %g” ) is an ideal, then Y = ‘ﬁg”) /a is a closed, shift-
invariant subgroup of X®). The following lemma is an immediate consequence
of the Propositions 2.12-2.13 in [Kit-Sch1] and Theorem 3.5 in [Sch].

3. LEMMA: Let {0} # Y C X(P) be a closed, shift-invariant subgroup, and let
a=YtcXxbp= mg”) be the annihilator of Y. Then 'Y satisfies (a)~(c) if and
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only if the ideal a C ER%D ) is non-zero, prime, and principal, and not generated by

a generalized polynomial in a single variable.

Lemma 3 yields an abundance of subgroups Y C X () satisfying (a)-(c). Let
Y ¢ X' be such a subgroup, and let & be a shift-invariant probability measure
onY. Weputa=Y+ C mgg), m = ‘}{ép)/a, observe that 9 is a module over
the ring 9{(2”), and write fi: Y = 9 — C for the Fourier transform of i, defined
by ii(e) = [{a,z)du(z) for every a € Y. Then

~ n

A - a) = ji(a)

for every ¢ € Y and n € Z2, and

Jim (Z ut® ~a(n)) =[] ila(n))

nck nekl

for every p-mixing set E C Z? and every map n +— a(n) from E into Y.

4. LEMMA: Let E C Z* be a finite, non-empty set which is Ay -non-mixing. If p

is non-atomic, then E is p-non-mixing.

Proof: If p is non-atomic, and if 0 # a € M = D‘iép)/a, then we claim that
the character Y, = {(a,-) of Y defined by a is not uy-a.e. equal to a constant.
Otherwise |fi(e})] = 1, and the shift-invariance of g implies that the set M =
{a € M: |i(a)] = 1} C M is a non-zero submodule, and that Z = Nt C Y is
a proper, closed, shift-invariant subgroup. By assumption, Z is finite, so that
Z = M/N is finite. We set ji(B) = pu(—B) for every B € By and conclude that
the convolution |u|? = p * ji, whose Fourier transform is given by W = |a)? is
a probability measure with finite support. Hence u has finite support, which is
absurd.

Corollary 2.7 in [Kit-Sch2] implies that there exist elements a, € M, n € E,
not all equal to 0, such that Y pu*®a, = 0 for all k in an infinite subset
K C N. The first part of this proof shows that at last one of the characters x,,
= [lucE Xan - Ok for every k € K,

Ran

is non-constant p-a.e. As 1 = XSk
negE

the set £ must be g-non-mixing. |

Proof of Theorem 2: Let E C Z? be a minimal Ay-non-mixing set which is
also minimal g-non-mixing, and choose as in the the proof of Lemma 4 a map
a: E — 9~ {0} and an infinite subset K C N such that Y, o u*a(n) = 0
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for every k € K. Then «* - a(n) = — 2 meE~{n} uF™a(m) for every k € K and
n € E. For every n € E, the set E \ {n} is p-mixing, and

la(@)) = Jim A(u'" -a(n) = Jim |~ 7 w*™-a(m)
keK keK meE~{n}
= [[ #la(m).
meE~{n}

By varying n we obtain either that |f(a(n))] = 1 for every n € E, or that
i(a(n)) =0 for every n € E.

As in the proof of Lemma 3 we set M = {a € M |i(a)] = 1} and observe
that 991/M is finite and p atomic whenever M # {0}. In particular, ji(a(n)) =0
for every n € E, and by replacing the map a: n — a(n) from E to 9 with
a':n— a(n) = h-a(n) for an arbitrary, but temporarily fixed element h € mg”)
we see that f(h-a(n)) = 0 whenever n € E, h € 9%(2’7), and h-a(n) # 0. Fix
n € E for the moment, and put W = {h-a(n): h € D‘iép)} and Z' = Wt C Y.
Since fi(a) = 0 for every non-zero a € M, the measure ' induced by p on Y/Z’
is equal to the Haar measure on Y/Z’. Since oY is topologically conjugate to a
skew-product action of Z2 on Y/Z' x Z', the ergodicity of z under o implies
that g = Ay. |

If we know a little more about the generator of the annihilator Y+ = a of the

subgroup Y, then we can weaken the assumptions of Theorem 2.

5. THEOREM: Let 0 # f € mg” ) be an irreducible Laurent polynomial, a =
fiR(Qp ), and assume that the shift-action ¥ of Z? on Y = a* ¢ X is mixing,
and that the support S(f) of f is a minimal Ay-non-mixing set. If p is a non-
atomic, oY -invariant probability measure on Y such that S(f) \ {n} is p-mixing
for some n € S(f), then p = Ay.

Proof: Since ) css) cf(n)u”k“ € a for every k > 1 we obtain that

ifa) = ﬂ(up"n -a) = kll)rgoﬂ - Z %uz)"m -a
meS(fin

T

meS(f)n{n}
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for every a € MM = iRép ) /a. As Fy, is finite and p is non-atomic, we conclude as
in the proof of Theorem 2 that fi(a) = 0 whenever 0 # a € M, and that u = Ay.
1

6. Examples: In the following examples we consider irreducible Laurent poly-
nomials f € R{? and set a = fRY and ¥ = at c X@.

(1) (cf. [Kit-Sch2]) Let f = 1+ uj + ug + u + wyus + u3. Then E =
{(0,0),(1,0),(0,1)} is a minimal Ay-non-mixing set, and Theorem 2 implies that
every o -invariant probability measure y on Y for which ¢ is y-mixing for every
n € {(1,0),(0,1),(1, —1)}, is equal to Ay.

(2) (cf. [Led], [Kit-Sch2]) Let f = 14-u;+uz. Then S(f) = {(0,0),(1,0),(0,1)}
is minimal Ay-non-mixing, and by letting n vary in E we see from Theorem 5
that every probability measure g on Y for which any of the transformations
"(}1,0)’ Tlo1)r OF O'(Y_IYI) is mixing, must be equal to Ay. This example is of
interest because of certain formal similarities between oY and the N2-action on
T generated by multiplication by 2 and 3 (cf. [Fur], [Rud)).

(3) Let f =14 uy +u;' +up. Then S(f) = {(-1,0),(0,0),(1,0),(0,1)} is
minimal Ay-non-mixing, and by setting n = (0,1) we see from Theorem 5 that

Y

every non-atomic, ¢* -invariant probability measure p on Y for which cr(y1 0) is

three-mixing, is equal to Ay.

7. Remark: IfY C X is a subgroup satisfying (a)—(c) then there exist shift-
invariant, ergodic probability measures g on Y which are different from Ay.
A method for constructing such measures on the group Y in Example 6 (2)
is described in [Kit-Schl]. In general we put a = Y+ and consider, for every
k > 1, the subring R = ]Fp[ulipk uzipk] c RP). We write MM*) instead of
m = mﬁf)/ a in order to emphasize that 9t = M*) is to be viewed as an R¥)-
module. Then 9*) has non-trivial R*)-submodules of infinite index. If M*)
9MM® is such a submodule, then Y™ = (MF)L C Y is an infinite, closed
subgroup of Y which is invariant under the shifts {o(mpr npr): (m,n) € Z2}.
Although the Haar measure AT = Ay 18 not shift-invariant, its orbit average

) p—%; Zf:;ol f;—ol PR O(m,n) 18 a non-atomic, shift-invariant, ergodic
probability measure on Y which is obviously non-mixing under every oY. By
choosing sequences M) ¢ N2 C ... of submodules N*) ¢ MK we obtain
sequences (,um(k), k > 1) of such measures, and every limit point p of such a
sequence is again shift-invariant. Note that these shift-invariant measures p may
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be chosen to have the property that the entropy h, (o) is either positive or equal
to 0 for some given non-zero n € Z2.

8. Examples: (1) Let Y < X() be a subgroup satisfying (a)—(c). For fixed
k>0,1>1,let fr, = 1+u’1’k +ufp’c R -+uzl’k(pl_1), and put N = fi  RE+D Ja ¢
o+, Then Y = {y = (ya) € Y: Y(mpr+t npr+t) T Y(mpk+igpk npr+t) + 0o +
Y(mpk+i4pk (pi—1),mpe+1) = 0 (mod p) for every (m,n) € Z?}, and the orbit aver-
age u™ of Ay« is non-atomic, shift-invariant, ergodic, and not equal to Ay.

@ Let f=14u+uleR? a= MY and Y = at c¢ X@. Then
M = R /a is a module over the ring R = Fy[uf!, uf?), and £ = (1+uz)R/a C
9M is an R-submodule with infinite index. Put Y* = £ = {y = (g, n €
Z2): Y(amn) = Y@m+1,n) for all (m,n) € Z?}, and note that p = 3(Ays + Ay -
U(%J)) is non-atomic, shift-invariant and ergodic, but non-ergodic under oy g).

9. Problem: IfY C X is a subgroup satisfying (a)-(c), can there exist a
non-atomic, shift-invariant probability measure ¢ # Ay on Y which is mixing
under some o), n € Z2?
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